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Abstract

Sociolinguistic factors such as age (Vipperla, Renals, & Frankel, 2008) and gender (Tat-
man, 2017) have been shown to impact the performance of various automatic speech recog-
nition (ASR) models. Previous research has touched upon such performance discrepancies,
uncovering biases in ASR models, but has often focused on the English language (e.g., Katha-
nia, Reddy Kadiri, Alku, & Kurimo, 2020; Tatman & Kasten, 2017; Vipperla, Renals, &
Frankel, 2010). However, as these systems are used worldwide, finding biases in different
languages is of high importance. With this thesis, I extend recent research by Feng, Kudina,
Halpern, and Scharenborg (2021), who sought to find biases based on age, region, gender,
and non-nativeness in a Dutch ASR model. Like Feng et al. (2021), I use the Netherlandic
Dutch data from the Spoken Dutch Corpus (Oostdijk, 2000) to train a hybrid deep neural
network-hidden Markov model (DNN-HMM). However, the previous study did not take into
account the various regional variants of Belgian Dutch, which is also known as Flemish, e.g.,
West Flemish, and Brabantian (Odijk, 2012). I therefore evaluate the model using the Flem-
ish data from the JASMIN-CGN corpus (Cucchiarini, Van hamme, van Herwijnen, & Smits,
2006). The evaluation confirms a bias against speakers from West Flanders and Limburg, as
well as against children, male speakers, and non-native speakers. In addition, the discussion
of the findings includes an analysis of the most misrecognized phonemes. The current study
contributes to a better understanding of bias, and subsequently inclusivity, in ASR.
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1 Introduction
Technology is ubiquitous—the omnipresence of the Internet of Things came with a rise

in voice-automated devices, such as smart speakers. In fact, a survey showed that in 2019 one
in four Americans owned such a device (Auxier, 2019) and a 2022 report demonstrated that
currently every other American owns a smart home device, with one third of them using voice
assistants (Kinsella, 2022). However, these devices do not perform equally well for everyone
trying to use their speech to control the room temperature, create a shopping list, call their
family, or even order their favorite drink from Starbucks (Hoy, 2018)1.

The accuracy with which the voice commands are recognized by the automatic speech
recognition (ASR) system is dependent on various factors. For example, ASR systems experi-
ence difficulties in distinguishing commands when multiple people are speaking (Qian, Weng,
Chang, Wang, & Yu, 2018), when the environment is noisy (Hamidi, Satori, Zealouk, & Satori,
2020; Kathania, Kadiri, Alku, & Kurimo, 2021), or when the speech contains multiple languages
(Sreeram & Sinha, 2020). Another influence on the accuracy of ASR are the speakers themselves
(Benzeghiba et al., 2007).

In essence, depending on the speech data that was used to train the system, the acoustic
model specifically, speech by certain people, such as the elderly (Vipperla et al., 2008; 2010),
tends to be recognized more accurately than speech by others. This difference in accuracy be-
tween various (groups of) people is called bias. Bias has already been the topic of many studies
in adjacent fields such as machine learning (e.g., Hellström, Dignum, & Bensch, 2020; Mehrabi,
Morstatter, Saxena, Lerman, & Galstyan, 2021), natural language processing (e.g., Blodgett,
Barocas, Daumé, & Wallach, 2020; Sun et al., 2019), chatbot design (e.g., Feine, Gnewuch,
Morana, & Maedche, 2019; Zabel & Otto, 2021), and researchers have recently started to investi-
gate bias in automatic speaker recognition (Toussaint Hutiri & Ding, 2022). The contemporary
area of research into bias in ASR seeks to uncover sociolinguistic factors that negatively im-
pact the recognition accuracy of ASR systems, and where possible, mitigate the bias (e.g., Peri,
Somandepalli, & Narayanan, 2022; Zhang, 2022; Zhang, 2022).

A study conducted by Feng et al. (2021) forms the basis of this thesis; they quantified
bias in a Dutch ASR model and found that it performed worse for certain speaker groups, i.e.,
had a higher word error rate (WER) compared to other groups. In other words, differences
in performance were found between speakers of different ages and genders, and from different
regions. Furthermore, the model performance differed between native speakers and non-native
speakers of Dutch. The study also showed that the model did not perform well on speech from
Flanders, the northern, Dutch-speaking part of Belgium.

In light of the regional varieties within Flemish speech (Odijk, 2012) and the differences
in their intelligibility (Impe & Geeraerts, 2008; Van Bezooijen & Van den Berg, 1999a; 1999b),
this thesis seeks to answer the following questions:

RQ 1: Using Flemish data, does a Dutch hybrid deep neural network-hidden
Markov model ASR system with language model rescoring exhibit bias in terms

1I want to provide an anecdote by an acquaintance as an example; recently they got a TV remote with a
speech recognition button, which bypasses the need to browse the digital program guide manually. Usually, it
will recognize the command “Go to Netflix”. Actually, even the command “Netflix” will suffice. However, after
this acquaintance had taken out their denture, the command sounded more like “Njetfwlisxsch” (/ñEtfwìIskS/), to
which the synthetic voice replied “Please repeat that”. After repeating “Njetfwlisxsch, dwamn it”, the synthetic
voice replied “Please do not curse”.
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of a difference in WER when comparing speakers from different regions, in dif-
ferent age groups, with different genders, and native versus non-native speak-
ers?

RQ 2: Compared to the acoustic model, does the bias decrease when using language
model rescoring?

The hypotheses are as follows:

H1 Region: I expect that there will be a difference in WER when comparing regions, following
the results from Impe and Geeraerts (2008) and Van Bezooijen and Van den Berg (1999a;
1999b).

H1.1 More specifically, I expect a higher WER for West Flemish speakers compared to
those from the transitional and central regions

H1.2 Additionally, I expect a higher WER for Limburgish speakers compared to those from
the transitional and central regions.

H2 Age: I expect that there will be a difference in WER when comparing age groups, following
the results from Feng et al. (2021).

H2.1 More specifically, I expect a higher WER for children than for youngsters.

H2.2 Additionally, I expect a higher WER for elderly speakers than for youngsters.

H3 Gender: I expect that there will be a higher WER for male speakers than for female
speakers, following the results from Feng et al. (2021), because this study makes use of the
same corpora (Spoken Dutch Corpus (Oostdijk, 2000), and Jasmin-CGN (Cucchiarini et
al., 2006)).

H4 Non-nativeness: I expect that there will be a higher WER for non-native speakers than
for native speakers, following the results from both Feng et al. (2021) and Van Wijngaarden
(2001).

If H1 through H4 are all rejected, that would suggest that the model recognizes all types
of speech well or that the biases lie somewhere else, which future research could discover. This
would indicate that the specific training and test data used are of high importance. In any case,
the findings of this research will provide further insights into bias in ASR.

In the following sections, I will introduce the topic of automatic speech recognition (Section
2.1) and describe relevant ASR models (Section 2.2). In Section 2.3, I will describe the motivation
for a study on Flemish ASR. Then I will provide an overview of the literature on different biases
(Section 2.4), followed by a description of the used corpora in Section 3.1, ASR model in Section
3.2, and phoneme error analysis in Section 3.3. After that, I will present the bias results as
well as the results from the error analysis (Section 4). I will conclude this thesis by providing a
detailed account of the implications of the research (Section 5).

It is important to note that most of the literature makes reference to ‘gender’ bias even
though often the speaker data contains information that pertains to binary labels referring to
‘sex’, making the term ‘gender’ inaccurate. Similarly, the notion of a ‘native speaker’ is considered
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“problematic” (Cheng et al., 2021), though often used in previous literature. These topics,
however, are beyond the scope of this thesis. Hence, I will follow the conventions of the literature,
and thus use the terms ‘gender’ and ‘(non-) native speaker’, for uniformity.

2 Background
This section first introduces the reader to ASR by describing the history of ASR systems

and their basic components. Section 2.2 then provides an overview of various relevant ASR
models. In Section 2.3 I outline the Flemish context, stating why this research is necessary. The
different types of biases researched in this study are presented in Section 2.4: bias due to regional
language varieties (Section 2.4.1), gender (Section 2.4.2), age (Section 2.4.3), and non-nativeness
(Section 2.4.4).

2.1 Introduction to ASR
The main means of human communication is speech. Since the 1950s, efforts have been

made to extend this mode of communication to computers, bridging the gap between multiple
fields, including signal processing, pattern recognition, linguistics, and more (Rabiner & Juang,
1993). In essence, ASR, also known as speech-to-text, converts spoken language into written
language. Science fiction has implemented speech recognition multiple times, for instance in
1966, a universal translator that made use of ASR was featured in Star Trek2. Another example
is Battlestar Galactica from 1978, in which Commander Adama keeps a journal by dictating his
stories to a speech-to-text machine. However, ASR is not merely science fiction.

ASR started with Audrey, the Automatic Digit Recognition machine created at Bell Labs,
which could accurately recognize digits between zero and nine, as spoken by its creator (Davis,
Biddulph, & Balashek, 1952). A decade later, IBM added six words to their Shoebox recognizer,
which made it possible for the machine to perform mathematical calculations: minus, plus,
subtotal, total, false, and off (IBM, n.d.-a; Sikka, n.d.). In 1976, the Harpy system was developed
at Carnegie Mellon University (Lowerre, 1976). It was already able to recognize over one thousand
words. Further significant systems include IBM’s Tangora (IBM, n.d.-b) in the mid-1980s, which
sported a vocabulary of twenty thousand words and made use of a statistical method: the Hidden
Markov Model (HMM), which is still in use to this day (O’Shaughnessy, 2019) (see Section 2.2 for
an explanation of HMMs). Shortly before the new millennium Dragon Systems developed Dragon
Dictate, where every word had to be followed by a pause, and later Dragon NaturallySpeaking
(Zumalt, 2005). A more detailed overview of the advancements (in statistical modeling) in speech
and speaker recognition is available in Furui (2005; 2010).

The following decades saw fast-paced developments with Microsoft implementing dictation
in Office in 2002 (Zumalt, 2005) and Google providing voice-automated business search in 2006
(Bacchiani, Beaufays, Schalkwyk, Schuster, & Strope, 2008) as well as voice input for Google
Maps and Google Search in 2008 (Schalkwyk et al., 2010). After their influential Shoebox and
Tangora, in 2011 IBM’s Watson successfully competed in the TV show Jeopardy!, showing the
impact of and opportunities for ASR and natural language processing. Apple’s Siri integration
into iOS followed that same year (Silver, 2022), paving the way for further voice assistants.

2A short clip of the universal translator, or rather its malfunction, from Star Trek: Discovery can be found
here: https://youtu.be/lIKppXg0sYw
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Figure 1: The basic components of an ASR system (Pervaiz et al., 2020)

Quickly thereafter followed Google Now, Microsoft’s Cortana, Amazon’s Alexa, and Google
Home, shaping the ASR landscape.

The basic components of most ASR systems are presented in Figure 1 by Pervaiz et al.
(2020: p. 3). Speech, which is a continuous signal, is converted into a digital signal, “a pattern of
bits” (Priya & Kannamal, 2020: p. 3). Through sampling, the continuous signal is converted into
a discrete one, making it storable in computers. From this signal, background noise is disregarded
and a range of features is extracted as vectors. Among these features, Mel-Frequency Cepstral
Coefficients (MFCCs) are commonly used—this study makes use of them as well (see Section 3.2
for a description of the ASR model). MFCCs are derived by following a number of steps such as
taking the Fourier transform of a signal, and are based on the mel scale (Stevens, Volkmann, &
Newman, 1937); a scale that, contrary to the Hertz scale, is non-linear and thus better reflects
human pitch perception. This makes them good candidates for feature extraction (Kamath,
Liu, & Whitaker, 2019). The extracted vectors are then given as input to the decoder, which
consists of an acoustic model (AM) and language model (LM). The acoustic model, e.g., HMM,
maps sound units to phonemes. A pronunciation lexicon will then attempt a mapping of the
phoneme to a grapheme, e.g., the Dutch voiced velar fricative /G/ to the grapheme <g>. After
combining the sounds into a sequence, ideally a word, the LM calculates the likelihood of that
word appearing in the given context (sentence), taking into account the language constraints
(syntax and semantics) (O’Shaughnessy, 2019). For example, the phrase “Eye sea a duck” would
be less likely than “I see a duck”. The system subsequently outputs the text with the highest
likelihood.

To evaluate how well an ASR system works, one can calculate the word error rate (WER).
It is “the most commonly used metric for speech recognition” (Kamath et al., 2019: p. 387) and
is calculated as follows:

WER =
(S + I +D)

N
∗ 100

Where:

• S is the number of substitutions at word level.

• I is the number of insertions at word level.

• D is the number of deletions at word level.

• N is the total number of words in the reference.
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2.2 Relevant ASR Models
This section introduces some of the different models that are currently in use and are

relevant for the understanding of the ASR model used in this thesis: hidden Markov models
(HMMs), deep neural networks (DNNs), time-delay neural networks (TDNNs), recurrent neural
networks (RNNs), and bidirectional long short-term memory (BLSTM) models.

The 1970s and even more so the 1980s, with IBMs Tangora (IBM, n.d.-b), brought an
approach to speech recognition that is still applied today: the Hidden Markov Model. An HMM
is a process in which a stochastic (i.e., random) sequence of observations is produced based
on another hidden (i.e., presumed) stochastic process (Furui, 2005; 2010; O’Shaughnessy, 2019;
Rabiner & Juang, 1986; 1993). Rabiner and Juang (1986) explain this concept through the
example of a coin toss. The results of the coin toss are shared (i.e., heads or tails), but the
tossing is not visible. In ASR, the inputs for HMMs are the extracted feature vectors, which
come from the speech signal. These are observations based on the internal speech production
(e.g., tongue position), which is hidden (O’Shaughnessy, 2000). Figure 2 shows a basic HMM
with three variables, or states, that model the <u> in the word “cup” (Kumar, 2018). The
nodes represent the states and the arrows represent the state transitions, i.e., transitioning
from one state to another (horizontal arrows) or staying in the same state (curved arrows).
Figure 3 shows the concatenation of the HMMs of <c>, <u>, and <p> (Kumar, 2018). The
probability of the state transitions in an HMM were often modeled using Gaussian mixture
models (GMMs), creating a GMM-HMM. A GMM consists of multiple Gaussians, which are
probabilistic (Contreras Carrasco, 2019).

Figure 2: Basic HMM for <u> in “cup” with three states, each containing a forward transition
and a self-loop (Kumar, 2018)

Figure 3: Concatenated HMM for “cup” with three states for each phoneme, each containing a
forward transition and a self-loop (Kumar, 2018)

However, in the late 1980s GMM-HMMs started to be, albeit slightly, outperformed by hy-
brid models where the state transitions were modeled through artificial neural networks (ANNs)
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Figure 4: A basic neural network with two inputs, one hidden layer with two nodes, and one
output node (Zhou, 2019)

Figure 5: A sigmoid function (Chang et al., 2012)

(Dahl, Yu, Deng, & Acero, 2012). An ANN is built up of layers of nodes, also called neurons or
perceptrons. Each neuron is given an input and a mathematical function to perform and then
outputs the result. Figure 4 (Zhou, 2019) shows a basic ANN with two inputs (x1, x2) which are
passed onto two neurons in the hidden layer (h1, h2). Following that, the output from the hidden
layer is given to one neuron in the output layer (o1). The mathematical calculation involves
adding weights to the inputs and transforming this sum through an activation function. One
such activation function is the sigmoid, or logistic, function (Mitchell, 1997), which is defined as:

σ(y) =
1

1 + e−y

The output of a sigmoid function lies between 0 and 1, as presented in Figure 5. Therefore,
sigmoid functions are commonly used to predict a probability, such as the probability that the
phrase “Eye sea a duck” would occur.

As computer power grew over the years, it became possible to add more intermediate hidden
layers to ANNs, which allow for “greater flexibility in [machine learning]” (O’Shaughnessy, 2019:
p. 3467). When a neural network entails many hidden layers, it is called a deep neural network
(DNN). A combination of such a DNN with an HMM was proposed by Dahl et al. (2012). Figure
6 shows a diagram of their hybrid architecture in which the state transitions are modeled by the
HMM and the triphone observation likelihoods are modeled by the DNN. The nodes S1 through
SK depict the states. The transition probabilities for both forward transitions and self-loops are
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given by aS1S1 through aSKSK
. The observation probabilities from the HMM are then given to

the DNN, in which h(1) through h(M) are the hidden layers, v is the visible layer, and W1 through
WM are the weights. The input for the visible layer is the speech signal.

Figure 6: Hybrid DNN-HMM architecture by Dahl et al. (2012)

Despite their relative success, neural networks still displayed shortcomings in handling the
time information of acoustic events. Hence, Waibel, Hanazawa, Hinton, Shikano, and Lang (1989)
proposed a new architecture for phoneme recognition, specifically /b/, /d/, and /g/: time-delay
neural network (TDNN). It integrates delays into its units and passes the sums through the
sigmoid function, which was opted for “due to its convenient mathematical properties” (p. 329).
Therefore, it is possible for TDNNs to “represent temporal relationships between acoustic events”
(p.329), while still ensuring time invariance. The TDNN architecture is provided in Figure 7.
Specifically, it depicts the 16 coefficients for the speech input “BA”. Black squares represent
positive values and gray squares represent negative values. The input layer is fully connected
to the first hidden layer, which contains eight time-delay units. A second hidden layer contains
three such units. By integrating over the values given by the second hidden layer and passing
this information to the output layer, the result (in this case /b/) is given.

In ASR, it is desirable and important to include contextual information over longer periods
of time. While HMMs could model time predictions, the number of previous states is fixed.
A more flexible solution is the recurrent neural network (RNN), as they have the ability to
“[accumulate] information from each time step” (Kamath et al., 2019: p. 315). Therefore, the
entire sequence is taken into account when making predictions. However, during model training,
RNNs may suffer from a problem known as a vanishing or exploding gradient (for a more detailed
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Figure 7: TDNN architecture by Waibel et al. (1989)

account on training a model, i.e., forward and backward propagation, please refer to Kamath
et al. (2019)). Optimization techniques such as regularization can reduce the chances of such a
vanishing or exploding gradient occurring.

Another possible method to prevent gradient problems is the long short-term memory
(LSTM) model (Hochreiter & Schmidhuber, 1997). LSTMs have memory cells, which are a
type of hidden state that stores content and include three types of gates: input, output, and
forget gates. These gates are mechanisms that address the problems in previous models; seeing
as HMMs are only able to ‘remember’ a fixed number of states and RNNs can ‘remember’ too
much, so that training may come to a halt, LSTMs are designed to “learn the conditions for
when to forget, ignore, or keep information in the memory cell” (Kamath et al., 2019: p. 324).
Combining an LSTM with another LSTM in the other direction, meaning that not only the
previous, but also the following context is taken into account, results in a bidirectional LSTM
(BLSTM). An example of such a bidirectional architecture is given in Figure 8 (Ji, Han, Hou,
Song, & Du, 2020). It shows an input layer that is connected to a forward layer as well as to
a backward layer. The output stems from the information of both the forward and backward
layers. Multiple such structures together model the sequential information from a speech signal.
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Figure 8: BLSTM architecture by Ji et al. (2020)

2.3 Motivation for Flemish ASR
This section provides the reader with an overview of the Flemish context. It first outlines

the study on which this thesis is based, followed by an explanation on why this examination of
Flemish is needed.

Feng et al. (2021) tested a Dutch “state-of-the-art” (p.1) speech recognizer on different
kinds of speech. They quantified the bias with regard to various sociolinguistic factors: gender,
age, region, and whether or not the speaker was a native speaker of Dutch. In addition, they
compared the word error rates (WERs) of read speech and (semi-) spontaneous human-machine
interaction (HMI). Speech of four regions in the Netherlands (classified as West, Transitional,
North, and South) was tested. It was found that read speech was recognized more accurately
than HMI in all cases. Additionally, the model exhibited bias against both native and non-native
male speakers. The authors also point out that there is less variation in WERs across regions
for read speech by children aged 7–11 and youngsters aged 12–16, which suggests that speech by
adults over 60 years old has a larger linguistic distance (Geeraerts, Grondelaers, & Speelman,
1999; Impe, Geeraerts, & Speelman, 2008) from standard speech. Interregional differences in
WER across the Netherlands can be noted as well: in HMI, speech from the South and North
regions respectively show the highest and lowest WERs.

In addition to the investigation of bias in terms of WERs, the recognition errors were
systematically analyzed in an in-depth examination of the phoneme error rate (PER). The report
of this examination included the top 5 phonemes that occurred no less than 50 times. Here too,
differences between the various speaker groups could be observed. It was found that the model
performance, overall, was poor for vowels as spoken by non-native speakers, e.g., /œy/, /Y/,
/y/, and /ø:/. The authors attribute this to the level of difficulty to acquire these vowels for
learners of Dutch. The reported misrecognition of phonemes from speech by native speaker in
their respective age groups showed that children’s /Y/, /h/, /@/, /j/, youngsters’ /Y/, /ø:/, /h/,
/@/, and older adults’ /h/, /x/, /E/, /@/ were poorly recognized.
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In addition, the research featured speech from Flanders, which differs from Netherlandic
Dutch on various levels such as lexical and phonetic (Impe et al., 2008; Steurs, Vandeghinste, &
Daelemans, 2022). Across the board, the model is able to recognize Flemish the least accurately,
specifically from Flemish children, with WERs of up to 66.4% for girls’ HMI and 56.4% for boys’
read speech. The analysis of the phoneme errors for Flemish showed that, overall, the phonemes
/y/, /œy/, /Au/ were difficult to recognize.

However, the article does not fully capture possible biases in Flemish speech as the whole
of Flanders was considered one region. Flemish as a variety of Dutch itself, though, has been
increasingly studied (e.g., De Caluwe, Hüning, Vogl, & Moliner, 2012; Delarue & De Caluwe,
2015) and also consists of several language varieties (Odijk, 2012: West Flemish, East Flemish,
Brabantian, Antwerpian, Limburgish) that are not all equally (mutually) intelligible.

For example, Van Bezooijen and Van den Berg (1999b) studied the objective intelligibil-
ity of three peripheral varieties of Dutch (Gronings, Limburgish, West Flemish) and Frisian,
which is a separate language, as indicated by listeners from western and central provinces in
the Netherlands. They found that the Gronings variety was the easiest to understand, whereas
West Flemish and Frisian were equally difficult to understand. Another study by Van Bezooijen
and Van den Berg from 1999a with both Dutch and Belgian listeners showed similar results.
Although listeners from Belgium found Frisian the least intelligible, for Dutch listeners West
Flemish was less intelligible than the varieties from Groningen, Limburg, and Friesland. This
difference in intelligibility in human listeners may also indicate a difference in ASR performance.

Similarly, Impe and Geeraerts (2008) investigated the intelligibility of Standard Dutch
compared to regional varieties. In their study, they asked students from West Flanders, Antwerp,
Brabant, and Limburg to participate in a lexical decision task, various multiple choice questions,
and a survey. They demonstrated that there is a significant effect of language varieties on the
word intelligibility. More specifically, Standard Dutch and Brabantian words were recognized
faster and with higher accuracy. In contrast, participants recognized the peripheral varieties West
Flemish and Limburgish slower and with lower accuracy. While Antwerpian is often combined
with Brabantian into a ‘central’ variety (e.g., Devos, 2006; Taeldeman, 2001), it was found to
be significantly less intelligible than Brabantian, though more intelligible than the peripheral
varieties. This shows that even within Flemish listeners there are differences in the intelligibility
of regional varieties.

Consequently, as previously stated in H2, I hypothesize that these intelligibility differences
will be noticeable in the comparison of ASR performance across Flemish varieties. Therefore, a
study into the ASR of Flemish is required. However, seeing as most voice assistants have not
included Belgian Dutch in their repertoire (Technologies, 2021)—in fact, Google only recently
integrated a Flemish synthetic voice into their Google Assistant, in the fall of 2021 (“Philippe
Geubels als Vlaamse stem van Google Assistent”, 2021)—, I build upon Feng et al’s study that
included a Dutch model trained only on Netherlandic Dutch.

2.4 Bias in ASR
Bias in ASR is most commonly defined as the difference in recognition accuracy, or WER,

between different groups of speakers. As the following subsections will demonstrate, the presence
and scope of this bias is dependent on the data and ASR model that were used. Therefore, there
is not one truth in bias research.
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The following subsections provide a review of the literature on biases in ASR due to regional
language variants, gender, age, and non-nativeness. In comparing these studies, I thus do not
seek to invalidate previous research, but rather illustrate the various possible outcomes. However,
it is clear that bias can present at various stages of a research workflow (Toussaint Hutiri & Ding,
2022).

2.4.1 Regional Bias

While speech recognition systems have become more prevalent only in recent years, studies into
the recognition of regional varieties have been present, albeit relatively scarcely, for over two
decades. Previous research has shown that speech in regional language varieties may increase
the ASR model’s WER as traditionally these models, more specifically the acoustic models and
pronunciation lexica, are not developed using speech samples of non-standard language varieties
(Lehr, Gorman, & Shafran, 2014). Using both Standard American English (SAE) and African
American Vernacular English (AAVE) speech data, Lehr et al. (2014) compared the performance
of a baseline GMM-based model in the IBM toolkit. They found an increase in WER of over
10% for AAVE compared to SAE. In contrast, their discriminative pronunciation model showed
a 2% improvement for AAVE.

Similarly, German ASR models experience difficulty in recognizing within-country regional
or non-standard speech. Thus, Schiel, Kipp, and Tillmann (1998) proposed to statistically model
the pronunciation for each individual language variety with SAMPA units. However, having
tested such modeling in the VERBMOBIL task, they found that it is only effective when “a
sufficient amount of reliably transcribed speech data” is available (1998: p. 131, italics in original).

Following that, Beringer, Schiel, and Regel-Brietzmann (1998) considered the influence of
“moderate regional variants” (p. 85) on the performance of the Daimler Benz HMM-based ASR
system (Class, Kaltenmeier, & Regel-Brietzmann, 1993) by including dictionaries with regional
pronunciations in the model training. However, no significant improvement over the baseline
(30.91%) was found. They suspected that the ASR system might already capture the slight
regional variation. Greater regional variation might lead to different results.

Baum, Erbach, Kommenda, Niklfeld, and Puig-Waldmüller (2001); Baum, Muhr, and Ku-
bin (2001) reported the results of an evaluation study by Philips Speech Processing in which the
performance of two acoustic models was compared: a model trained on German from Germany
(GG) and a model trained on German from Austria (GA). It was found that, when testing with
GA data, the GG model performed more poorly. In fact, a 7% increase in WER was found
compared to the GA model: 23% vs. 16%. Later, even slightly adapting a model trained on GG
to include Austrian pronunciations on a rule basis was found to have a positive impact on the
recognition of Austrian speech (Wepner, 2021).

Comparable studies have been conducted for English. For example, Tatman (2017) investi-
gated the automatic captions, based on Google’s speech recognition system, for YouTube videos
on the so-called “accent tag”. In such videos, speakers often go through a word list which they
pronounce in their regional language variety. Because the speakers pronounce isolated words,
there is no context or sentence information available for the language model of the recognition
system. A comparison of the captions’ accuracy for speakers from five regions (Scotland, Geor-
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gia, New England, California, and New Zealand) demonstrated that they are less accurate for
speakers speaking a Scottish variety of English relative to the other varieties.

In the same year, Tatman and Kasten (2017) compared WERs for automatic YouTube
captions and Bing Speech transcriptions for recordings made in four “acoustically distinct” (p.
934) varieties of American English: General American, Northern Cities, Southern and Californian
English. Although Xiong et al. (2017) presented a WER as low as 6.2% for Microsoft’s 2016
conversational speech recognition system, the system behind Bing Speech, Tatman and Kasten
found a mean WER of 45% in the Bing Speech transcriptions, though no significant differences
across regional variety were found in this system. However, automatic YouTube captions, with
a mean WER of 31%, did show such statistically significant differences. Contrary to the findings
by Tatman (2017), where the lowest WER was found for Californian English, the Youtube ASR
system performed the worst for the Californian variety, followed by the Southern and Northern
varieties respectively, with the best performance reported for General American.

More recently, Nigmatulina, Kew, and Samardzic (2020) investigated non-standard varia-
tion in fourteen variants of Swiss German using the ArchiMob corpus (Samardžić, Scherrer, &
Glaser, 2016). They still reported a WER of over 40% for a Swiss German TDNN model with
dialectal transcriptions, and nearly 30% with normalized transcriptions. Better performance
was found when using other types of error rates: 21.27% using a flexible WER (FlexWER),
“which accounts for permissible spelling variants” (p. 21), and 14.64% using a character error
rate. Interestingly, they noted that the amount of training data per variant did not considerably
impact the recognition. For example, the lowest WER, approximately 20%, was found for the
Graubünden variant, for which only one interview was included in the training data. Conversely,
although the model was trained using twelve interviews in the Zurich variant, a WER of 40%
was found. The authors indicate that (more) training data including a broader range of domains
and a larger number of different speakers could improve the performance.

That being said, Dizdarevic, Hagmuller, Kubin, Pernkopf, and Baum (2004) introduced
a regional variety recognizer for Austrian and German German using prosody information from
the SpeechDat databases, which was then evaluated using the acoustic model for the respective
variety, trained with the Hidden Markov Toolkit (HTK) (Young et al., 2000). Despite a fairly
low variety recognition rate, fairly low WERs of 12.20% for Austrian German and 15.54% for
German German were found.

A summary of the previously mentioned studies can be found in Table 1. For each publi-
cation, the evaluated (acoustic) model type is given, followed by the main result. The date and
model type for the study by Philips Speech Processing were not provided.

2.4.2 Gender Bias

Against the backdrop of Doukhan, Poels, Rezgui, and Carrive’s (2018) study, which uncovered
gender inequality in French media, Garnerin, Rossato, and Besacier investigated the impact of
media representation on the performance of ASR. For their investigation, they made use of a
hybrid HMM-DNN with speaker adaptation in the Kaldi speech recognition toolkit (Povey et
al., 2011) and a 5-gram LM using the SRILM toolkit (Stolcke, 2002). Looking at data from 1998
until 2003, Garnerin et al. found that two thirds of the speakers were male and male speakers
occupied three quarters of the speaking time. Using this unequal data, they determined “that
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Publication Model Result

Lehr et al. (2014) GMM
Discriminative pronunciation model

Non-standard worse
Improvement but still non-standard worse

Schiel et al. (1998) HMM Improvement when modeling pronunciation statistically
Beringer et al. (1998) HMM No significant improvements
Philips Speech Processing Improvement when training on Austrian speech
Wepner (2021) Rule-based Improvement when including Austrian speech
Tatman (2017) Youtube Differences across varieties

Tatman and Kasten (2017) Bing
Youtube

No significant differences
Non-standard worse, differences across varieties

Nigmatulina et al. (2020) TDNN Swiss German worse
Dizdarevic et al. (2004) HMM German German worse

Table 1: Overview of publications on regional bias

gender is clearly a factor of variation in ASR performance” (2019: p. 8). In a 70-hour evaluation
dataset, as demonstrated by WERs calculated at episode level for each speaker, gender impacted
ASR performance. Unlike in the study by Feng et al. (2021), although there were differences in
WERs across TV shows, on average, the model correctly recognized male speakers 24% better
than female speakers.

Following those findings, (Garnerin, Rossato, & Besacier, 2020) proposed a reflection on
ASR evaluation practices. In their subsequent study 2021, they conducted an experiment into
female representation in the LibriSpeech corpus (Panayotov, Chen, Povey, & Khudanpur, 2015),
which is a widely-used corpus of audiobook recordings, and recognition accuracy based on gender.
The end-to-end model was trained three times with the ESPnet toolkit (Watanabe et al., 2018),
using LibriSpeech data that included 30%, 50%, or 70% female speech. They concluded that
increasing the amount of speech data by women decreased the WER, though not for the whole
model, but rather only for female speakers.

In her 2017 work on automatic YouTube captions, Tatman not only investigated the effect
of regional varieties on WER, but she also examined the influence of gender and found that female
speakers were recognized less accurately than male speakers. However, Tatman and Kasten
(2017) did not replicate these results with YouTube captions and Bing Speech transcriptions.

Moreover, like Feng et al. (2021), earlier research has also found the reverse: Sawalha and
Abushariah (2013) examined the performance of an Arabic HMM-based ASR system trained on
a Modern Standard Arabic speech corpus (Abushariah et al., 2012). With 5.29% and 7.48% as
WERs for female and male speakers respectively, they revealed a bias against male speakers.
Sawalha and Abushariah suggested that the cause of this difference in WER might be that the
higher amplitudes and frequencies in female voices positively influenced the MFCCs and thus
generated clearer feature vectors.

Adda-Decker and Lamel (2005) analyzed the performance of HMM-based ASR systems
(Schwartz et al., 2004) for French and for American English using broadcast news and sponta-
neous telephone conversations. They found lower WERs for female speakers in both languages,
i.e., 9.4% compared to 8.7% for French data and 12.0% compared to 9.4% for English data. Upon
further analyses on the lexical and acoustic levels, they attributed the discrepancy to men’s speech
deviating more from standard pronunciations as well as including more disfluencies.

Table 2 offers a synopsis of the above-mentioned studies, along with the used (acoustic)
models and the main findings.
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Publication Model Result

Garnerin et al. (2019) DNN-HMM Male better

Garnerin et al. (2021) End-to-end Overall male better, increasing female training data
reduces bias but does not reduce overall WER

Tatman (2017) Youtube Male better

Tatman and Kasten (2017) Bing
Youtube

No significant differences
No significant differences

Sawalha and Abushariah (2013) HMM Female better
Adda-Decker and Lamel (2005) HMM Female better

Table 2: Overview of publications on gender bias

2.4.3 Age Bias

Intelligibility also differs across age groups due to variability in vocal characteristics. For example,
the speech rate of elderly adults aged 65 and older is generally lower than that of younger
adults aged 20–30 due to the “functional decline of elderly adults’ vocal organs” (Kwon, Kim, &
Choeh, 2016: p. 120). Additionally, elderly women were found to have longer silences between
syllables and elderly men were found to produce significantly less energy in their second and
third formants. However, the need or desire for voice assistants also exists in seniors, perhaps
particularly in seniors. This is exemplified by Amazon’s recent competition in which developers
could win prize money for creating the best Alexa skill, designed specifically for people aged 55
and over (Hal Schwartz, 2022).

The recognition of speech by older adults has previously been researched in a broad range
of settings. For instance, in 2008, Vipperla et al. published a longitudinal study in which ASR
performance was compared across speakers’ ages using recordings of the Supreme Court of the
United States. They found that, in a context-dependent triphone HMM, the WER for speech
by elderly speakers aged 59 through 87 was higher than that for adults under 55 years of age.
In fact, a relative increase in WER of 31.3% was found. In addition, the model performed worse
for female speakers in both age groups, although this is attributed to a lack of female speech in
the training and test sets. When using speaker adaptation based on maximum likelihood linear
regression, the overall WER for elderly speakers is reduced from 47.8% to 41.8%. Be that as it
may, the discrepancy between the age groups is still present.

Comparable findings were reported in a subsequent study in which vocal tract length
normalization (VTLN)—“a technique to transform the acoustic space of different speakers to a
target speaker space” (Sivaraman, Mitra, Nam, Tiede, & Espy-Wilson, 2016: p. 455)—was used
to in an effort to reduce interspeaker variability (Vipperla et al., 2010). Despite the improvement
in overall performance, still a WER of 40.4% for elderly speakers and a 10

Similarly, a relative increase of 41% in WER was found in European Portuguese speech by
speakers between the ages of 81 and 86 compared to 60-65-year-old speakers in an ASR system
that combines HMMs with multi-layer perceptrons (Pellegrini et al., 2012). With acoustic models
adapted to the age groups, however, the WER decreased, reducing the discrepancy between the
younger and older age groups.

Many other approaches to elderly speech recognition have been adopted, for example by
Hämäläinen et al. (2015). The AALFred Personal Life Assistant was trained for four languages:
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French, Polish, Portuguese, and Hungarian. Depending on the language, Hämäläinen et al.
attempted different models, though each acoustic model, originating from the Microsoft Speech
Platform - Runtime, was optimized for elderly speech. The first model they included was a
gender-dependent GMM trained with speech by younger people. Secondly, they implemented
a deep belief network (DBN), which is a probabilistic generative model with multiple layers
of stochastic hidden units (Hinton, 2009: para. 1). Lastly, a gender-independent GMM with
speaker normalization was integrated. They found relative improvements in WER between 10%
and 33%, with the best relative performance coming from the French DBN.

Furthermore, a range of hybrid DNN-HMM models was tested by Fukuda, Nishimura,
Nishizaki, Iribe, and Kitaoka (2019) to investigate region-dependent ASR on a corpus of elderly
Japanese speech of read-aloud news article sentences. The speakers were, on average, 79 years
old and came from four different regions in Japan. Fukuda et al. compared the performance of
models trained specifically on this corpus to the performance of models trained on speech by
younger seniors with an average age of 68 years old and even younger adults aged 20–49. It was
found that the best model performance was obtained by training the model on the speech of
younger seniors. However, after adaptation to the region of the speakers, the models trained on
the Corpus of Spontaneous Japanese (Furui, Maekawa, & Isahara, 2000) obtained lower WERs.

However, not only elderly speech deviates from the standard training datasets. Sawalha
and Abushariah found that speakers over 30 years of age were recognized more poorly than those
under 30. They ascribed this to younger speakers having “better vocal characteristics than the
older speakers” (2013: para. 10).

Nonetheless, speech by children is highly variable depending on their age, showing higher
fundamental frequencies (Busby & Plant, 1995) and a high magnitude for temporal and spec-
tral acoustic parameters (Lee, Potamianos, & Narayanan, 1999). This variability and “obvious
physiological differences” (Russell & D’Arcy, 2007: p. 108) cause children’s voices to differ sig-
nificantly from adults’, making ASR more challenging for them, as is stated in the review of
previous research into ASR for children’s speech provided by Gerosa, Giuliani, Narayanan, and
Potamianos (2009). Since then, this research has been further expanded. For example, Cosi
(2009) transferred the SONIC speech recognizer (Pellom & Hacioglu, 2001) from English to Ital-
ian and was able to produce a phonetic error rate as low as 12.2% using techniques such as
VTLN.

Similar results were found when Kathania et al. (2020) compared an ASR system with
a GMM-HMM to a DNN-HMM to investigate the effect of formant modification. Both models
showed an improvement over their respective baselines, from approximately 34% to 21% and 20%
to 14% WER. They further inspected results by dividing the children test data into age groups,
which showed a relative improvement of 45% for children aged 7 to 9. The model performed
best for 10- to 14-year-olds. Though, in order to further reduce the overall WER, Kathania et
al. combined their proposed method with VTLN and speaker rate adaptation and presented a
WER of 12.35%.

The adaptation of a DNN from adult to child speech has also been demonstrated to sig-
nificantly improve child speech recognition. Making use of Kullback-Leibler divergence regular-
ization, weighted at the utterance level, Matassoni, Falavigna, and Giuliani (2016) were able to
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train a hybrid DNN-HMM model in Kaldi (Povey et al., 2011) using an adult speech corpus to
recognize child speech with a WER as low as 10.6%.

The previously mentioned studies are outlined in Table 3, together with the evaluated
(acoustic) models and the main findings of each study.

Publication Model Result

Vipperla et al. (2008) HMM Improvement after regression but still seniors worse
Vipperla et al. (2010) HMM Improvement after VTLN but still seniors worse
Pellegrini et al. (2012) HMM Improvement after age adaptation but seniors still worse

Hämäläinen et al. (2015)
Gender-dependent GMM
DBN
Gender-independent GMM

Improvement over the baseline
Biggest improvement over the baseline
Improvement over the baseline

Sawalha and Abushariah (2013) HMM Speakers over 30 years old worse
Cosi (2009) HMM Improvement over baseline after VTLN and adaptation

Kathania et al. (2020) GMM-HMM
DNN-HMM

Improvement over the baseline
Bigger improvement, biggest after VTLN and adaptation

Matassoni et al. (2016) DNN-HMM Improvement over baseline

Table 3: Overview of publications on age bias

2.4.4 Non-Nativeness Bias

As far as non-nativeness is concerned, Van Wijngaarden (2001) compared the intelligibility of
both native and non-native speakers of Dutch, and found negative effects of non-nativeness on
speech intelligibility. Especially Dutch vowels that do not occur in the non-native speakers’
first language, American English, were recognized more poorly. Analogous to human listeners
experiencing difficulty in understanding speech from non-native speakers (Van Wijngaarden,
2001), ASR systems show poorer performance for such speech. Therefore, researchers have been
investigating various ways to improve the recognition of non-native speakers.

This is exemplified in a study by Aalburg and Hoege (2003), who simulated a non-native
Spanish speech evaluation by training HMM-based models using peninsular Spanish as non-
native and Colombian Spanish as native speech. They were able to improve model performance
by adapting the acoustic models through probability density function-based clustering. Word
recognition rates of approximately 80% and 96% were found for Spanish from Spain and Colom-
bia, respectively. In other words, despite the overall improvements, the model performed more
poorly for the simulated non-native Spanish (i.e., peninsular Spanish). In 2004, Aalburg and
Hoege adopted a similar approach to improve the recognition of German as spoken by Turkish
speakers, which showed a word recognition rate of 87.5% and 94.2% for non-native and native
speakers, respectively.

In a recent study, Gretter, Matassoni, Falavigna, Evanini, and Leong (2020) presented an
overview of a shared task on ASR for non-native child speech, specifically Italian learners of
English. They showed that a model by Knill, Wang, Wang, Wu, and Gales (2020) using Kaldi
(Povey et al., 2011) and HTK (Young et al., 2000) was able to reduce the baseline WER of 35%
to just below 16%. It made use of graphemic TDNNs as the acoustic model. A 4-gram LM,
standard unidirectional recurrent neural network language model (RNNLM) (Mikolov, Karafiát,
Burget, Cernockỳ, & Khudanpur, 2010), as well as a four succeeding-word RNNLM (Chen, Liu,
Qian, Gales, & Woodland, 2016; Chen, Liu, Wang, Gales, & Woodland, 2016) were used for
rescoring.
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In the following year, J. Wang, Zhu, Fan, Chu, and Alwan (2021) described their hybrid
DNN-HMM model for Italian learners of German for the 2021 shared task, which included a
BLSTM and RNNLM. They presented a non-speech state discriminative loss approach to avoid
overfitting and found a WER of just under 40%, a relative improvement of around 12% compared
to the baseline of 45%. However, the highest performance scores for this task were found using
wav2vec (Baevski, Zhou, Mohamed, & Auli, 2020) and a transformer model for German, with
a WER of 23.5%, and convolutional neural network TDNN for English, with a WER of 25.69%
(Gretter et al., 2021).

A further attempt to improve the recognition of non-native speakers was carried out by
Matassoni, Gretter, Falavigna, and Giuliani (2018). They applied transfer learning, i.e., gener-
alizing a model that was developed for one task to another task (D. Wang & Zheng, 2015), in
order to adapt a multilingual DNN to data from non-native speakers. The model was trained on
Italian, German, and English child speech. It could be observed that the multilingual acoustic
model was able to “compensate for the pronunciation differences of a non-native speaker” (p.
6232).

The above-mentioned studies are summarized in Table 4, which provides the evaluated
(acoustic) models and main findings. These studies have thus attempted to improve the recog-
nition of non-native speakers, but a discrepancy between non-native and native speakers still
exists.

Publication Model Result

Aalburg and Hoege (2003) HMM Overall improvement but still simulated non-native worse
Aalburg and Hoege (2004) HMM Overall improvement but still non-native worse
Knill et al. (2020) TDNN Improvement over baseline
J. Wang et al. (2021) BLSTM Improvement over baseline

Gretter et al. (2021) Wav2vec
Transformer

Improvement over baseline
Improvement over baseline

Matassoni et al. (2018) Multilingual DNN Improvement over monolingual model

Table 4: Overview of publications on non-nativeness bias

3 Method
In this section I present the methods used in this research. Section 3.1 describes the two

corpora needed for training and testing the ASR model. The model itself is defined in Section
3.2. In Section 3.3 I detail the process of the in-depth phoneme error analysis. The code used for
the experiments in this thesis was based on the code used by Feng et al. (2021)3 and is available
at https://github.com/Aariciah/jasmin.

3.1 Corpora
3.1.1 Training

In order for this research to function as an extension of the study by Feng et al. (2021), the model
of the current study is also trained using approximately 500 hours of speech from the Spoken
Dutch Corpus (Oostdijk, 2000) (CGN, Corpus Gesproken Nederlands). The corpus contains

3The orginal code is available at https://github.com/laurensw75/kaldi_egs_CGN and https://github.com/
syfengcuhk/jasmin
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approximately 900 hours of speech, totaling just under nine million words, from various scenarios
including spontaneous face-to-face conversations, news reports, and telephone conversations. The
detailed component list (Van Eerten, 2007) is as follows:

• Spontaneous face-to-face conversations

• Interviews with teachers of Dutch

• Telephone dialogues recorded using a switchboard

• Telephone dialogues recorded using a mini disc recorder

• Simulated business negotiations

• Interviews and discussions broadcast on radio and television

• Discussions, debates, and meetings (especially in the political domain)

• Classes in secondary school (focusing on the teacher)

• Spontaneous commentaries, including sports, broadcast on radio and television

• Current affairs programs and news reports broadcast on radio and television

• News broadcasts on radio and television

• Commentaries broadcast on radio and television

• Sermons, lectures, and speeches

• Seminars, lectures, presentations

• Read-aloud texts

In addition, phonetic, syntactic, and prosodic annotations are available for some of the
data, and speaker and audio file information can be found in the metadata. All speakers are over
18 years of age, with the eldest group being over 55 years old.

Although the CGN consists of speech from different regions in both the Netherlands and
Belgium, only Netherlandic Dutch data is used to train the model. This allows for a clear view
of the recognition of Flemish speech within a Dutch model.

3.1.2 Testing

To evaluate the model, Flemish data from the Jasmin-CGN corpus (Cucchiarini et al., 2006) was
used. JASMIN stands for Jongeren, Anderstaligen en Machine Interactie voor het Nederlands
(Youngsters, Non-Dutch Speakers, and Machine Interaction for Dutch); the corpus is an exten-
sion of the CGN that contains speech data of children and youngsters, older adults as well as
speakers whose first language is not Dutch. Non-native speakers of Dutch in the Netherlands had
a variety of first languages including Moroccan Arabic and Turkish. In Flanders, the non-native
speakers were almost exclusively Francophones. Due to Belgium’s multilingual landscape (i.e.,
Dutch in the North, French in the South, German in the East), many Belgians speak French
at home. Two exceptions were included: one speaker whose first home language was Persian,
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and one speaker whose first home language was Dutch and whose second home language was
Arabic. Furthermore, the corpus does not only feature read speech, but also includes speech
from human-machine interactions. The inclusion of this mode in the corpus is important, seeing
as many applications of ASR, such as smart kitchen devices (Kendrick, Frohnmaier, & Georges,
2021), are designed for (semi-) spontaneous speech rather than read speech. In addition, spon-
taneous or conversational speech is found to differ from read speech, for instance because of
acoustic reduction (Schuppler, Ernestus, Scharenborg, & Boves, 2011) or just general variation
in pronunciation (Schuppler, Adda-Decker, & Morales-Cordovilla, 2014).

Next to word-for-word transcriptions, automatic phonetic and syntactic annotations were
added to the speech. The transcriptions were added automatically for native speakers and
corrected manually for non-native speakers. The goal for the JASMIN corpus was to record
approximately 95 hours of speech, of which two thirds in the Netherlands and one third in
Flanders. Speech data from a total of 207 Flemish speakers was gathered.

The test data was into four regional categories according to the corpus metadata, which is
based on the CGN metadata:

• West Flemish (W, peripheral region): 40 speakers, of which 22 female and 18 male

• East Flemish (E, transitional region): 38 speakers, of which 19 female and 19 male

• Brabantian (B, core region): 62 speakers, of which 32 female and 30 male

• Limburgish (L, peripheral region): 34 speakers, of which 18 female and 16 male

This was based on the area the participants lived in between the ages of 3 and 18. In the
case of children, it was based on where they lived at the time of recording. For 33 speakers (of
which 20 are female and 13 are male), no region label was provided.

In accordance with Feng et al. (2021) and the corpus aims, the age groups in this thesis
are categorized as follows:

• Children aged 7–11: 43 speakers, of which 23 female and 20 male

• Youngsters aged 12–16: 44 speakers, of which 22 female and 22 male

• Older adults aged 60+: 38 speakers, of which 22 female and 16 male

More specifically, the ages of the older adults range from 65 to 89. Non-native speakers
are divided into two age groups:

• Minors aged 7–16: 52 speakers, of which 25 female and 27 male

• Adults aged 18–60: 30 speakers, of which 19 female and 11 male

No 17-year-old speakers were included in the recordings.
For adult non-native speakers, information about their Dutch language proficiency was in-

cluded in the form of their level in the Common European Framework of Reference for Languages
(CEFR). The included levels are:

• A1 (Breakthrough): 9 speakers, of which 6 female and 3 male
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• A2 (Waystage): 9 speakers, of which 5 female and 4 male

• B1 (Threshold): 11 speakers, of which 8 female and 3 male

The corpus metadata for the amount of time that non-native speakers have been learning
Dutch ranges from four months to three years, although this information is not provided for all
speakers. In the Jasmin-CGN corpus, the data is labeled with binary sexes: female and male.

• NC: native children between the ages of 7 and 11 → 6h 10m

• NY: native youngsters between the ages of 12 and 16 → 6h 10m

• NNC: non-native children and youngsters between the ages of 7 and 16 → 6h 10m

• NNA: non-native adults between the ages of 18 and 60 → 6h 10m

• NOA: native older adults ages 65 and over → 5h 5m

While nationality, education level, place of education, the number of years in the region, and
the language spoken at home (including ‘dialect’; ‘tussentaal’, which is ”an intermediate variety
between dialect and standard Dutch” (De Caluwe, 2009); and languages other than Dutch) are
also present in the metadata, these are excluded from the analysis, as they are beyond the scope
of this thesis.

3.2 ASR Model
The study makes use of a hybrid DNN-HMM system (Dahl et al., 2012) by Feng et al. (2021)

using Kaldi (Povey et al., 2011). I adopt the TDNN-BLSTM model parameters from Feng et al.
(2021). Three 1024-dimensional TDNN layers are complemented by three sets of bi-directional,
1024-dimensional LSTM layers. The lattice-free maximum mutual information criterion (Povey
et al., 2016), which “performs sequence discrimination by introducing competing hypotheses
through a denominator graph in the cost function” (Madikeri et al., 2020), is used to train the
model, alongside various data augmentation methods to increase the amount of training data:
noise (Snyder, Chen, & Povey, 2015), speed perturbation (Ko, Peddinti, Povey, & Khudanpur,
2015), and reverberation (Ko, Peddinti, Povey, Seltzer, & Khudanpur, 2017). High-resolution
mel-frequency cepstral coefficients of 40 dimensions are used as input features to the acoustic
model, which is trained for 4 epochs. A pre-trained GMM-HMM elicits context-dependent phone
alignments through forced alignment, which are used to train the acoustic model. The system
makes use of an RNNLM (Xu et al., 2018) with three TDNN and two LSTM layers. N-best
results are generated by a tri-gram language model and rescored by the RNNLM, which are both
trained on the transcriptions from the CGN.

3.3 Error Analysis
After training the acoustic model and rescoring the n-best results using an RNNLM, the

models were evaluated by providing them with samples of both read and HMI speech by various
groups as input. These groups are described in Section 3.1.2. The WERs were calculated as
a whole as well as for each group separately, based on weighted averages. In other words, the
amount of speech data per group impacted the final WER. For instance, fewer hours of speech
are available for native older adults, so the WERs for their speech had a smaller influence on the
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total WER. The averages per speaker region were calculated separately by averaging the results
of the different age groups, as there were no overarching regional groups created; therefore they
are not weighted averages. Biases were then estimated by investigating the differences in WERs
across the various speaker groups. A comparison was then made between the biases in the
acoustic model and those in the rescored model.

Following that, the corpus transcriptions and the text given by the ASR model (i.e. the
reference and recognition hypothesis, respectively) were transcribed phonetically, mapping the
graphemes to phonemes, using the Phonemizer (Bernard & Titeux, 2021) with an eSpeak NG4

backend. Subsequently, the transcribed files were aligned and PERs were calculated for each
speaker group using the SCLITE Scoring Package from SCTK, the NIST Scoring Toolkit5. Man-
ual calculations were made to combine the PERs for read speech and HMI. Likewise, the results
of the different age groups per region were combined manually to obtain overarching regional
results. For each speaker group, the top 5 misrecognized phonemes were compared.

4 Results
In this section, I present the detailed results of the ASR model performance across different

groups of speakers of Flemish: first I report the results of the model before the RNNLM rescoring,
then I report the results after the rescoring. Next, I describe the results of the in-depth phoneme
error analysis.

4.1 Acoustic Model Results
The following tables provide a brief overview of WERs of the TDNN-BLSTM acoustic

model without rescoring.

4.1.1 Regional and Age Bias

Differences across regional language variety can be seen in Tables 5 and 6 for read speech and
HMI, respectively. Both tables demonstrate that West Flemish speakers were poorly recognized,
with WERs as high as 60.44% for child HMI speech. Table 5 shows that a bias of 7.2% was found
when comparing the average WERs for West Flemish and Brabantian. Similarly, Limburgish
speakers were misrecognized, on average, 5.9% more than Brabantian speakers. Furthermore, in
Table 6, a difference of nearly 20% can be observed between Brabantian children (52.41%) and
Limburgish children (71.72%). The biases based on the average, when comparing with Brabant,
were as follows: 6.65% against West Flanders, and 6.60% against Limburg. Overall, in both
speech modes, the model performed best for Brabantian speech and worst for West Flemish
speech.

However, the discrepancy between the regions decreased with the speakers’ ages. The
lowest WERs were found in older adults; in read speech, Brabantian seniors were misrecognized
approximately 30% of the time, and in HMI East Flemish seniors were misrecognized 40% of the
time. Seniors were recognized 17.27% better than children in read speech and 15.56% better in
HMI.

4https://github.com/espeak-ng/espeak-ng
5https://github.com/usnistgov/SCTK
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Group W E B L W. Avg

NC 48.02 45.06 44.47 53.80 48.24
NY 48.02 37.40 38.32 44.76 42.66
NOA 35.24 29.77 27.25 29.99 30.97
Avg 43.88 37.41 36.68 42.85

Table 5: Acoustic model WERs (%) for read speech across native speaker age groups and regions.
"W.Avg" indicates the weighted average, and "Avg" indicates the regular average.

Group W E B L W. Avg

NC 60.44 59.81 52.41 71.72 59.98
NY 53.31 43.63 44.52 43.97 47.22
NOA 46.38 41.83 43.44 44.38 44.42
Avg 53.41 48.42 46.79 53.36

Table 6: Acoustic model WERs (%) for HMI speech across native speaker age groups and regions.

4.1.2 Gender Bias

Table 7 shows that overall, read speech is recognized better than HMI. A difference in performance
across gender can also be observed; the model shows a lower WER for male speech in HMI
compared to female speech, but the reverse is true for read speech. A 2.39% bias against male
speech was found in read speech and a 0.77% bias against female speech was found for HMI.

Read HMI

F 45.10 52.23
M 47.49 51.46
W.Avg 46.20 51.90

Table 7: Acoustic model WERs (%) for read and HMI speech across genders. "F/M" indicates
female and male.

4.1.3 Non-Nativeness Bias

Overall higher WERs can be seen in Table 8, which shows the model performance for non-native
speakers. Here too, the model performed better for adult speech than for child speech. However,
in all four cases, the average WERs are higher than for native speakers of the respective categories.
A difference in gender can also be observed; in the read mode female speech was recognized more
poorly, whereas in HMI, girls were better recognized than boys, but men were better recognized
than women.

A comparison of read speech by non-native children (aged 7–16) with read speech by native
children (aged 7–11) showed that there was a bias of 10.95% against non-native children.
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Group Read HMI

F M W. Avg F M W. Avg
NNC 60.11 58.75 59.19 60.07 60.98 61.00
NNA 52.24 47.57 50.24 58.30 52.23 56.06

Table 8: Acoustic model WERs (%) for read and HMI speech across non-native speakers.

4.2 Results with RRNLM Rescoring
4.2.1 Regional and Age Bias

To ensure a more accurate and complete view of the ASR model performance, the following
tables display the results after passing through the RNNLM for rescoring. In all instances, the
WERs decreased compared to the results without RNNLM rescoring.

Tables 9 and 10 show the WERs for each region and the three native speaker age groups.
Additionally, they show the WERs per gender (female, male). The final column in both tables
contains the weighted average per age group, whereas the bottom row provides the regular
average per region.

Table 9 demonstrates that, for read speech, speakers from Brabant were best recognized
overall, with the lowest WER being found for older adults. However, for native youngsters, the
best recognition was found in East Flemish speakers. Nonetheless, the difference between the
WERs for East Flemish youngsters and Brabantian youngsters was merely 0.1%. The highest
WER was found for Limburgish child speakers (50.25%), with an even higher rate for boys
(62.52%). In almost all cases, male speakers were recognized more poorly than female speakers.

A quantification of the bias shows that the model performed 7.08% worse for West Flemish
and 6.61% for Limburgish speakers compared to Brabantian speakers. In addition, a bias of
17.23% was found against children, compared to seniors.

From Table 10 it is clear that speech from HMI was recognized more poorly than read
speech, with WERs approximately 10% higher than in Table 9. This discrepancy can be found
across the different regions. Still, overall, the model performed best for Brabantian speech
(42.15%) compared to the other regions. However, older adults from East Flanders and young-
sters from Limburg were recognized better than their Brabantian peers. When comparing the
averages per region, a 6.55% bias against West Flemish speakers and 6.03% against Limburgish
speakers was found.

Like Table 9, Table 10 shows that the model performed best on speech by older adults,
with a weighted average of 40.42%. This resulted in a bias against children of 15.12%. In most
cases, male speech was recognized more poorly, though this trend is not as clear as in Table 9.

4.2.2 Gender Bias

While the previous tables provide detailed results for male and female speakers across different
regions and age groups, Table 11 shows the overall WERs per gender and mode of speech.
Compared to the model without RNNLM rescoring, the average WERs for read speech and HMI
speech decreased from 46.2% and 51.9% to 41.97% and 47.90% respectively. Contrary to Table 7,
female speech was better recognized than male speech in both modes, resulting in a bias against
male speakers of 2.71% in read speech and 0.33% in HMI.
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Group W E B L W. Avg

NC 43.75
42.40 , 45.35

41.14
39.62 , 43.45

40.06
39.84 , 40.30

50.25
39.06, 62.52

44.06
40.22 , 48.71

NY 41.42
40.30 , 42.81

31.58
26.14 , 38.90

31.68
33.79 , 29.36

39.07
33.33 , 44.30

36.68
34.65 , 38.99

NOA 31.03
29.04 , 34.36

25.53
25.21 , 26.14

23.22
22.82 , 23.83

25.45
29.18 , 21.41

26.83
26.64 , 27.02

Avg 38.73
37.25 , 40.84

32.74
30.32 , 36.16

31.65
32.15 , 31.16

38.26
33.86 , 42.74

Table 9: Rescored model WERs (%) for read speech across native speaker age groups and regions.
Weighted averages per group are at the top. The bottom results are in the format: female, male

Group W E B L W. Avg

NC 55.67
54.71 , 56.78

54.62
53.96 , 55.77

48.60
46.88 , 49.68

67.69
61.11 , 72.31

55.54
53.77 , 57.10

NY 47.54
47.14 , 48.26

40.57
38.35 , 45.15

39.57
39.16 , 40.00

36.85
33.88 , 40.30

42.13
40.96 , 44.09

NOA 42.89
38.42 , 48.96

38.16
46.35 , 30.79

38.28
36.67 , 40.86

40.00
43.36 , 36.39

40.42
40.48 , 39.79

Avg 48.70
46.76 , 51.33

44.45
46.22 , 43.90

42.15
40.90 , 43.51

48.18
46.12 , 49.67

Table 10: Rescored model WERs (%) for HMI speech across native speaker age groups and
regions. Weighted average per group are at the top. The bottom results are in the format:
female, male.

4.2.3 Non-Nativeness Bias

Table 12 shows comparable results as Table 8; read speech by male non-native speakers was
better recognized than that of their female counterparts, but the model performed better for
non-native girls in HMI. It can also be observed that, for the most part, the same age bias is
present as in the results for native speakers: children were more often misrecognized than adults.
While the reverse is true for girls and women in HMI, the difference in WERs amounts to merely
0.03%.

Non-native children’s read speech (aged 7–16) were recognized 11.89% worse than native
children’s (aged 7–11).

For non-native speakers, the difference in performance was the largest in speakers with
the lowest proficiency level (A1). However, contrary to expectations, the performance did not
steadily improve for the levels A2 and B1. While the WERs for A2 speakers were lower than

Read HMI

F 40.83 47.69
M 43.54 48.02
W. Avg 41.97 47.90

Table 11: Rescored model WERs (%) for read and HMI speech across genders.
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Group Read HMI

F M W. Avg F M W. Avg
NNC 57.23 32.75 55.95 54.45 56.87 56.68
NNA 49.26 44.45 47.28 54.48 49.67 52.61

Table 12: Rescored model WERs (%) for read and HMI speech across non-native speakers.

those for A1 speakers, a higher WER was found for speakers in the B1 level. Table 13 thus
shows that the best performance for non-native speakers was obtained for speakers in the A2
level. This is true for both read and HMI speech. The overall lowest WERs for non-native adults
were found for female speakers at the A2 level.

This does not mean, however, that female non-native speech was recognized better over-
all. In fact, for read speech, the model showed poorer performance for the A1 and B1 levels.
Nonetheless, a larger discrepancy between female and male non-native speakers can be found
in HMI speech at the A1 level, where the WER for women lies at approximately 60% and the
WER for men at approximately 74%. The weighted averages in Table 10 were skewed toward
the scores for female speech, as this part of the corpus contains more female speakers. Be that
as it may, Table 13 shows that, in general, approximately one in two words was not recognized
correctly by the ASR model.

CEFR Read HMI

F M W. Avg F M W. Avg
A1 52.69 50.17 51.79 59.95 74.07 62.09
A2 40.13 46.43 42.88 42.84 46.51 43.78
B1 51.97 46.35 50.27 59.76 50.25 55.02

Table 13: Rescored model WERs (%) for read and HMI speech across language learning levels.

4.3 Phoneme Error Analysis
Looking at the data in general, i.e., the data of all groups and both read and HMI speech,

the following five phonemes had the highest PERs: /e:/, /G/, /@/, /E/. Most of these are also
among the worst recognized phonemes in the different speaker groups. Across all regions, /e:/ is
the phoneme with the most misrecognitions. For West Flemish speakers the following phonemes
were most often misrecognized: /e:/, /E/, /@/, /t/, /A/. In East Flemish speech the following
phonemes had the highest PERs: /e:/, /@/, /E/, /h/, /G/. Brabantian speakers were recognized
poorly when pronouncing /e:/, /@/, /E/, /t/, and /n/. For the Limburg region, the following
phonemes were found to have the highest PERs: /e:/, /G/, /@/, /t/, /E/.

In female speech, /e:/, /E/, /G/, /@/, and /t/ were poorly recognized. The phonemes with
the highest PER in male speech were the same as the overall worst recognized phonemes. The
same phonemes were also poorly recognized when spoken by Flemish children, although the order
is slightly different: /e:/, /G/, /h/, /E/, /@/. The model performed poorly for /@/, /e:/, /E/, /t/,

and /n/ as spoken by Flemish youngsters. The pronunciation of /e:/, /t/, /E/, /@/, and /A/ by
Flemish seniors was also most often misrecognized.

For non-native children, the following phonemes were found to be most poorly recognized:
/e:/, /h/, /G/, /@/, /E/ For non-native adults, however, /e:/, /G/, /@/, /E/, and /n/ had the
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highest PERs. These results demonstrate that there was no clear difference in the recognition of
certain phonemes across regions, genders, age groups, or native versus non-native speakers.

5 Discussion and Conclusion
This study’s main aim was to examine whether a Dutch hybrid DNN-HMM ASR model

would show performance biases, i.e., differences in WER, when comparing speakers from different
regions, of different genders, in different age groups, and against non-native speakers of Dutch,
using data from Flanders. Furthermore, it sought to determine whether the biases decreased
after applying RNNLM rescoring. The speech data used to train the models came from the
Spoken Dutch Corpus (Oostdijk, 2000), though only the Netherlandic Dutch section was used.
In order to evaluate the model, Flemish data from the JASMIN-CGN corpus (Cucchiarini et al.,
2006) was used and divided into different speaker groups. WERs were compared across these
speaker groups and phoneme errors were reviewed.

The study expanded on previous research by Feng et al. (2021), who found that the model
performed worse for Flemish speech than for regions in the Netherlands. Upon closer analysis of
the Flemish regions, interesting results were found. In line with studies into human intelligibility
that have shown that West Flemish and Limburgish speech were perceived as less intelligible
(Impe & Geeraerts, 2008; Van Bezooijen & Van den Berg, 1999a; 1999b), the model performance
was poorest for West Flemish speakers, followed by Limburgish speakers. The overall biases for
these regions were approximately 6.5%. Both regions are considered peripheral regions, whereas
Brabant (including Antwerp) is considered a central region and obtained the best performance.

However, the performance did vary based on the speakers’ ages. While it was expected
that native youngsters would have the lowest WERs, as found in the Netherlandic Dutch data
(Feng et al., 2021), on average, seniors were recognized better. The obtained WERs for older
adults were relatively similar to those found by Feng et al. (2021), but the results for youngsters
and children were considerably higher. In fact, a difference in WER of approximately 17% was
found when comparing native older adults to native children. These results are quite surprising
considering the various attempts to improve child speech recognition that have previously been
undertaken (e.g., Kathania et al., 2020; Matassoni et al., 2016).

Additionally, Feng et al. (2021) found that female speech was recognized better than male
speech. Their results align with the findings from this experiment; overall male speakers were
misrecognized more than female speakers. Nonetheless, the bias against male speakers only
amounts to 2.7%, indicating a better balance in recognition than for the different age groups.
Gender bias seems to be highly susceptible to the training data, as previous studies have found
varying results. For instance Garnerin et al. (2019) found that an imbalanced corpus performed
better for male speakers, whereas Adda-Decker and Lamel (2005) obtained better recognition for
female speakers in a balanced corpus.

In line with the findings from Feng et al. (2021), poor recognition results were obtained
for non-native speakers. When comparing the results for non-native children to those of native
children, a bias of approximately 11% was found. Taking a closer look at the CEFR levels of
adult non-native speakers (A1, A2, B1) showed that, contrary to expectations, the model did not
perform the best for speakers in the B1 level. Instead, the WERs for speakers in the A2 level were
approximately 10% lower. One possible explanation may be that measuring language learning
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levels depends on a number of factors, usually speaking, writing, and reading. Therefore, it is
possible that the overall level of the speaker is assessed at B1, whereas the speaking skills are
assessed at A2, for instance.

A quantification of the biases in the model before and after RNNLM rescoring showed that
along with an overall decrease in WERs, the difference in WERs between the Flemish regions
became smaller. However, unexpectedly, this was not the case for the age biases, which stayed
approximately the same. Moreover, the biases against male and non-native children slightly
increased. These results warrant further investigations into biases in language models.

Finally, the examination of misrecognized phonemes uncovered that /e:/, /G/, /@/, /E/,

and /h/ were most often misrecognized across the whole test dataset. These remained relatively
constant across the speaker groups. I did not replicate the misrecognitions for Flanders found
in Feng et al. (2021), namely /y/, /œy/, and /Au/. This might be due to the use of another
automatic phonetic transcription and phoneme error calculation.

In conclusion, in this thesis I presented an experiment on bias due to regional language
varieties, age, gender, and non-nativeness in Flemish automatic speech recognition using a Dutch
model. By investigating WERs and phoneme misrecognitions across different groups, I provided
an overview of biases against various groups of Flemish speakers in Dutch ASR. While the find-
ings provide invaluable insights into ASR model performance discrepancies between and within
the various investigated groups, I am aware of the limited scope of the test data. While ap-
proximately six hours of speech samples per age group may generally be sufficient, dividing the
groups according to gender and then further according to region may impact the generalizability
of the results. Therefore, I believe that future research into bias in Flemish ASR, where a larger
dataset is used to test the model, could yield more accurate and generalizable results. Further-
more, this study could be expanded on by researching biases in a DNN-HMM model trained on
Flemish speech or a combination of Netherlandic Dutch and Flemish speech. Investigations into
Flemish biases in other models, such as transformer models, are also recommended. Nonetheless,
the findings have important implications for the development of inclusive ASR so that Flemish
speakers can also make use of Dutch ASR, regardless of their region, gender, age, or native lan-
guage. Moreover, the research contributes to a growing body of studies on ASR bias and thus
provides a stronger foundation for future research.
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